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1. Torsion points of order 11

In this section we want to show that there are no elliptic curves with torsion points of order 11.
In particular, we want to show that the only rational points on X1(11) are cuspidal. We will follow
the general argument provided by Mazur in his famous paper Modular Curves and the Eisenstein
Ideal.

First of all recall that X1(11) and X0(11) are elliptic curves of conductor 11 and the canonical
map

φ : X1(11) → X0(11)

is an isogeny of degree 5. From the modular interpretation, we also know that X0(11) has two special
rational points coming from the cusps [0], [∞]. While X1(11) has 10 different cusps, 5 defined over Q
and 5 defined over Q(ζ11)

+. We can deduce this looking at the moduli interpretation with generalized
elliptic curves and the Néron n-gons.

Consider the Néron models X1(11) and X0(11) defined over Spec(Z[1/11]). We have the exact
sequence

0 → Z /5Z → X1(11) → X0(11) → 0

over R = Spec(Z). The kernel is guaranteed to be Z /5Z by a theorem of Oort and Tate. Viewing
the schemes as sheaves on the étale site, we can then consider the long exact sequence in cohomology

0 → H0
ét(R,Z /5Z) → H0

ét(R,X1(11)) → H0
ét(R,X0(11)) → H1

ét(R,Z /5Z) → · · ·

Recall that by the properties of Néron models, we have X1(11)(Spec(Z[1/11])) = X1(11)(Q). The
exact sequence then become

X0(11)(Q)

φ(X1(11)(Q))
↪→ H1

ét(R,Z /5Z).
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For an affine scheme R = Spec(Z), the étale cohomology over R is equivalent to the Galois co-
homology of π1 groups. Now π1 acts trivially on Z /5Z, so the first cohomology group is given
by

H1
ét(R,Z /5Z) ∼= Hom(π1,Z /5Z).

Since there exists a unique Galois field extension of Q with cyclic Galois group of order 5 and
unramified outside of 11, namely Q(ζ11)

+ we conclude

H1
ét(R,Z /5Z) ∼= F5 .

and then
X0(11)(Q)

φ(X1(11)(Q))
↪→ F5 .

Observe that X0(11) contains the cusp [0] that has order 5 and it is not contained in the image of
the rational points of X1(11), we conclude

X0(11)(Q)

φ(X1(11)(Q))
∼= F5 .

Consider now the dual isogeny φ̂ : X0(11) → X1(11). Recall that by the Weil pairing we have

0 → Z /5Z → X0(11)[5] → µ5 → 0.

In this case we obtain by duality

0 → µ5 → X0(11) → X1(11) → 0.

We would like to pass again to a long exact sequence in cohomology. To do this, we cannot use
the étale site anymore since µ5 is not an étale group scheme over Spec(Z[1/11]) because it is not
reduced at the fiber at 5. In order to deal with this, we consider instead the flat site obtaining

0 → H0
fppf(R,µ5) → H0

fppf(R,X0(11)) → H0
fppf(R,X1(11)) → H1

fppf(R,µ5) → · · ·

and in particular
X1(11)(Q)

φ̂(X1(11)(Q))
↪→ H1

fppf(R,µ5).

Observe that since µ5 is not smooth over R, it is not guaranteed that H1
fppf(R,µ5) ∼= H1

ét(R,µ5). To
compute this cohomology group, consider the Kummer sequence

0 → µ5 → Gm
(−)5−→ Gm → 0

that is exact on the fppf site. Passing to the long exact sequence in cohomology we get

0 → H0
fppf(R,µ5) → H0

fppf(R,Gm) → H0
fppf(R,Gm) → H1

fppf(R,µ5) → H0
fppf(R,Gm) → · · ·

Now we have that the first cohomology group of Gm for the affine set Spec(Z[1/11]) is the Picard
group of Z[1/11] and in particular it is trivial. We then get

1 → Z[1/11]×

(Z[1/11]×)5
→ H1

fppf(R,µ5) → 1.

Computing the unit groups of Z[1/11] we obtain

Z[1/11]×

(Z[1/11]×)5
∼=

±11Z

±115Z
∼= Z /5Z

and so we conclude again
X1(11)(Q)

φ̂(X0(11)(Q))
↪→ F5 .

To conclude that X0(11) has rank 0 we need a sharper bound on this quotient. To do this, we move
our analysis to the prime of bad reduction of our elliptic curve, namely we look closer to the prime
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11. In particular, we now look at the curves over Q and over Q11 the completion at 11. We then
obtain the following commutative diagram

X0(11)(Q) X1(11)(Q) H1
fppf(R,µ5)

X0(11)(Q11) X0(11)(Q11) H1
fppf(Q11, µ5).

(∗)

(∗∗)

We have already previously computed H1
fppf(R,µ5) ∼= F5. Using again the Kummer sequence we

obtain
Q×

11 /(Q
×
11)

5 ∼= H1
fppf(Q11, µ5).

It is important to remark that µ5 is contained in Q11 since Q×
11

∼= Z×µ10 × Z11. Using that 5 is
invertible in Z11 we obtain that every element in (1 + 11Z11, ·) ∼= (Z11,+) is a 5th power. We then
get

(Q×
11)

5 ∼= ±5Z×Z11

and then
H1

fppf(Q11, µ5) ∼= F5 ×F5 .

Observe that 11 is clearly not a fifth power in Q11, and then the map (∗) is injective
H1

fppf(R,µ5) ∼= 11Z/115Z ↪→ H1
fppf(Q11, µ5) ∼= Q×

11 /(Q
×
11)

5.

We want now show that (∗∗) is a surjective map. Using formal groups, we obtain the following
commutative diagrams

0 Z11 X0(11)(Q11) X0(11)(F11) 0

0 Z11 X1(11)(Q11) X0(11)(F11) 0.

α φ β

Now observe that the composition with φ̂ gives a multiplication by 5 map. Since 5 is invertible in
Z11 we deduce α is an isomorphism. Furthermore, µ5(Q11) ∼= Z /5Z. Using the explicit equation of
X0(11) and X1(11) we can find that the group structure at F11 is given by

X0(11)(F11) ∼= Z /5Z×Z /10Z, X1(11)(F11) ∼= Z /10Z
We then have the following commutative diagram

0 Z/5Z ker(β)

0 Z11 X0(11)(Q11) Z /5Z×Z /10Z 0

0 Z11 X1(11)(Q11) Z/10Z 0

0 coker(φ) coker(β)

α φ β

Applying the Snake Lemma we find

0 0 Z/5Z ker(β) 0 coker(φ) coker(β) 0

from which we deduce ker(β) ∼= Z /5Z and φ is surjective. In particular, since the map (∗∗) is
surjective, the commutative square implies that the following quotient is trivial

X1(11)(Q)

φ̂(X0(11)(Q))
∼= 0.
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2. Torsion points of order 19

Consider now the case of the modular curve X0(19). We will try to apply the same techniques to
this curve. X0(19) is a curve of genus 1 with two rational cusps [0] and [∞]. LMFDB says it is the
curve of equation

X0(19) : y
2 + y = x3 + x2 − 9x− 15.

It is an elliptic curve of conductor 19. Since 3 = Num((19 − 1)/12) we deduce that the cuspidal
subgroup of J0(9) is of order 3. In particular [0] is a point of order 3 on the elliptic curve. In order
to determine the rank of X0(19) we consider the 3-isogeny associated to the subgroup generated by
[0] and we try to compute a 3-descent. Consider then

φ : X0(9) → A

the 3-isogeny associated. Sage tells us that A is the ellitpic curve of conductor 19 given by the
equation

y2 + y = x3 + x2 − 769x− 8470.

Consider the Néron models X0(19) andA associated toX0(19) andA defined overR = Spec(Z[1/19]).
Take the short exact sequence of schemes

0 → Z /3Z → X0(19)
φ→ A → 0.

A theorem by Oort and Tate assures us that the kernel of the isogeny is exactly the group scheme
Z /3Z over R. Viewing the group schemes as sheaves on the étale site, we can consider the long
exact sequence in cohomology

0 → H0
ét(R,Z /3Z) → H0

ét(R,X0(19)) → H0
ét(R,A) → H1

ét(R,Z /3Z) → · · ·

The exact sequence then become

A(Q)

φ(X0(19)(Q))
↪→ H1

ét(R,Z /3Z).

Observe that we have H1
ét(R,Z /3Z) = Hom(G(19),Z /3Z) where G(19) is the absolute galois group

unramified everywhere outside of 19. In particular, it factors throughQ(ζ19)/Q and then we conclude
H1

ét(R,Z /3Z) ∼= F3 and

A(Q)

φ(X0(19)(Q))
↪→ Z /3Z .

Let’s take a look at what happen at the prime of bad reduction 19. In particular we look at the
completion at 19

X0(19)(Q) A(Q) H1
ét(R,Z /3Z)

X0(19)(Q19) A(Q19) H1
ét(Q19,Z /3Z).

(∗)

(∗∗)

Observe that by Class Field Theory we have that the abelianisation of the absolute Galois group
Γab
19 of Q19 is isomorphic to

Q×
19

∼= Γab
19.

By the usual decomposition of Q×
19

∼= Z×µ18 × Z19 we obtain

H1
ét(Q19,Z /3Z) ∼= Z /3Z×Z /3Z .

By compatibility of the maps, (∗) is an injection. Using formal groups, we obtain the commutative
diagrams

0 Z19 X0(19)(Q19) X0(19)(F19) 0

0 Z19 A(Q19) A(F19) 0.

α φ β
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Again, the composition with φ̂ gives a multiplication by 3 map. Since 3 is invertible in Z19 we
deduce α is an isomorphism. We now need to understand what happens at the Néron models X0(19)
and A at the special fibers. LMFDB tells us that they have respectively Kodaira symbols I3 and I1.
In particular we then deduce

X0(19)(F19) ∼= Z /3Z×Z /18Z, A(F19) ∼= Z /18Z

We then have the following commutative diagram

0 Z/3Z ker(β)

0 Z19 X0(19)(Q19) Z /3Z×Z /18Z 0

0 Z19 A(Q19) Z /18Z 0

0 coker(φ) coker(β)

α φ β

Applying the Snake Lemma we find

0 0 Z/3Z ker(β) 0 coker(φ) coker(β) 0

from which we deduce ker(β) ∼= Z /3Z, coker(β) = 0 and φ is surjective. In particular, since the
map (∗∗) is surjective, the commutative square implies that the following quotient is trivial

A(Q)

φ̂(X0(19)(Q))
∼= 1.

We now move our attention to the dual isogeny φ̂ : A → X0(19). By duality we have the short
exact sequence

0 → µ3 → A → X0(19) → 0

over Q. Taking again the Néron models and applying the result of Oort and Tate we get

0 → µ3 → A → X0(19) → 0

over Spec(Z[1/19]). Viewing the schemes as sheaves for the fppf topology, we obtain in a similar
fashion as the previous computations

X0(19)(Q)

φ̂(A(Q))
↪→ H1

fppf(R,µ3).

Using the Kummer sequence we obtain

H1
fppf(R,µ3) ∼=

±19Z

(±19Z)3
∼= Z /3Z .

We conclude X0(19) has rank 0.
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Appendix A. Néron Models

Def 1. Let R be a Dedekind domain, K its fraction field. Consider E/K an elliptic curve. A Néron
model for E/K is a smooth group scheme E defined over Spec(R) whose generic fiber is E/K and
which satisfies the following universal property: for X/R smooth R-scheme with generic fiber X/K,
let φK : X/K → E/K the rational map defined over K, then there exists a unique R-morphism

φR : X/R → E/R
extending φK . The property is called Néron mapping property


